Category Archives: Technology

Notes from first ULI UK Tech Forum

1. We need to have a clear definition of technology. Physical as well as digital technology. Users and uses as well as creators and providers. Pre-construction, construction, post-construction. 

2. Because we’ve always had technology:

a. Writing (wooden stylus & wax tablet) movement

b. Air conditioning – occupancy

c. Underfloor heating – occupancy

d. The shower – personal

e. Bicycle – movement

f. Revolving door – occupancy

g. The elevator – occupancy

h. The car – movement

i. Solar panels – occupancy

j. The Internet – movement & occupancy

k. Autonomous vehicles – movement

l. Drones – movement

m. Photofungal trees – place
We’ve always had technology. It’s always changed. Perhaps the pace is accelerating globally (but we shouldn’t forget the industrial revolution). 

3. What hasn’t changed is the fundamental purpose of cities: social and economic trade. 

4. In the future, autonomous vehicles will change the nature of movement. They will permit people to be far more productive while they drive. 
5. Another key, and consequential, change will be in the nature of physical connections, transformed from highways to streets. Connectivity (as Chris Choa suggested) as an asset. 

6. Therefore the street as an asset. The piazza as an asset. Not just the buildings that line them. The suburban business park will go the way of the dinosaurs. 

7. The nature of online interaction is a further area of significant new change. 

We are what we street. The elements of successful #urban placemaking

PART ONE – THE ELEMENTS OF SUCCESSFUL URBAN PLACEMAKING
Location
How the site fits into its context, including complementary and competitive attractions; in other words, what else is nearby to which the design should respond? The success of any development, no matter how large, is a function of the wider setting.

Linkage
The specific points at which connections can be made into this context, including public transport connections; in other words the “gateways” into the design.

Layout
The spatial layout design of the project itself in terms of its streets and spaces, whether public/private or open/covered, and the importance of:

– first, encouraging through movement connections between gateways

– second, providing a simple, intelligible internal circulation network through a grid of streets and other connections.

This is the most important of the five elements since the spatial layout, once created, tends to be the most permanent part of the development. It is the most expensive to alter once constructed since it sets out the footprints of buildings and, importantly, since it carries the bulk of major services such as energy, water and data supply as well as waste handling.

Land use
The quantum of different land use attractions and the disposition of these within the spatial layout both in two and three dimensions; in other words where uses are and how they stack up, especially the land uses that occur at street level and any other principal pedestrian levels.

The location of land uses should follow the hierarchy of spatial connections created by the spatial layout design, with the most movement-sensitive land uses located on the most spatially important connections and so on. This alignment of land use attraction with spatial layout attraction is a fundamental property of both historic cities and successful modern places.

Landscape
How the spatial layout is “dressed” both in terms of the “green/blue” landscape of planting and water and the “architectural” landscape of building frontages at the principal pedestrian levels.

Here what matters is that the spatial layout is not overly fragmented or dispersed by planting and that the principal pedestrian levels are lined with open, active frontages.

PART TWO – THE DESIGN
The five elements of successful placemaking establish a framework for design practice. What matters next is the way in which these generic principles are translated into a specific design proposal. This is a creative step, which relies on a blend of imagination and craft, honed by experience.

The challenge for future urban practice is that the five elements are not commonly appreciated in the field of retail development, which has instead adopted principles of gravitational attraction that tend to create anchored, inward-facing, covered malls rather than open, street-based shopping streets, whether we call such streets “high streets” or “souqs”.

PART THREE – THE WAY FORWARD
It has been, and will continue to be, down to pioneering organisations to point out what is increasingly obvious to all but those who are too immersed in it: that anchored malls create sterile places; and then for these pioneers to deliver new places that work because they employ the timeless elements of successful placemaking.

Fortunately, this challenge is facilitated by the continued emergence of technology-based tools for analysing location, identifying points of linkage, testing different layout concepts and modelling the interaction of these with different land use and landscape treatments.

We don’t guess the structural performance of individual buildings so why do we guess the human performance of entire cities?

The structural steelwork of a large and complex building would not be designed without running engineering calculations. Even the smallest of buildings is subject to objective structural analysis. No client and professional team would rely on guesswork, no matter how famous or experienced the architect or engineer.

So why do we leave the human performance of places to the whim of architects who run no calculations and rely only on their instinct and ego? Why is the science of human behaviour so poorly developed? Why is chronic failure still tolerated?

In the early sixteenth century, William Harvey challenged the medical profession to take a more objective, more observation-driven approach to the understanding of the circulation of blood. At the time, medical thinking was largely based on the beliefs of Galen of Pergamon, who had set these out in the second century. Harvey challenged a medical mindset that hadn’t changed in one and a half millennia. And he encouraged his peers to embrace advances in science that allowed new forms of investigation.

We can see a similar state of affairs in the prevalence of, and institutional inertia around, twentieth century planning. Based on belief, not observation-based science, a doctrinal approach to urban planning and design pervades the professions. This is the case, whether the specific approach is Modernism, the Garden City movement or (and especially) Landscape Urbanism. Each is to some degree unscientific.

These approaches propose different kinds of urban outcomes but what unites them is a belief that the future should look fundamentally different to the form of continuously connected, dense and mixed-use urbanism found in cities for as long as there have been cities – the kind of urbanism that architects and town planners visit on their holidays.

The kind of urbanism – and here’s the irony – that Galen would have recognised. If only architecture and town planning were stuck in a fifteen hundred-year-old mindset. We would still have vehicles on the road but we wouldn’t have vehicle dominance. We wouldn’t have land use zoning that generates long-distance commuting, traffic congestion and negative health impacts. We wouldn’t be encroaching on the rural landscape with semi-detached, density-fearing dwellings.

Fundamental change in our professions is needed and science has an important part to play. In the spirit of Harvey’s observation-based approach, we need to embrace the new capabilities offered by sensing, analytics and modelling. We need to understand how cities truly work before we then form ideas about how to change them. We must move beyond the beliefs of twentieth century practice. The evidence is there to demonstrate that practice based on belief hasn’t delivered great places with the consistency required either by the investors in them or the users of them.

We can learn from Harvey, even if our end goal is the urbanism of Galen.

Sustainability & resilience – a SMART approach

1. Aspects of sustainability/resilience: SMART outcomes
Social – improvements in formation & retention of social connections

Environmental – increases in renewable energy production and reductions in energy demand

Economic – increases in land value creation

Health – improvements in public health outcomes

Education – improvements in achievements/qualifications

Safety – reductions in offending & reoffending.

Environmental
Urban carbon footprint is made up of:
1. Building carbon.
2. Transport carbon.

Urban carbon reduction can be achieved by:
1. Building carbon reduction – intelligent building services: heating/cooling, lighting.
2. Transport carbon reduction – walking, cycling, public transport & less private vehicle use.

2. Process specification: SMART inputs
1. Integrated Urban Modelling of existing building performance and transport performance.
2. Predictive Urban Modelling of expected development impacts.

3. Asset requirements for SMART approach
1. Pervasive data sensing
2. Data mapping – centrally coordinated & then distributed eg open platform distribution
3. Data analysis – undertaken by city, academia & industry then shared
4. Planning & design response – use of data to create development proposals
5. Development proposal testing – using the Integrated Urban Model.

Sustainable cities of the future – sketch

Notes for keynote at UK Green Building Council Annual City Summit, Birmingham.

1. Spatial planning & human behaviour implications of sustainability – reduction of transport carbon through shift towards walking, cycling & public transport

2. A massive shift needed in transport + land use planning, urban + landscape design, architecture. Professional inertia. Turning the supertanker.

3. A massive opportunity. Reason to turn.

4. Lessons from the past eg Pompeii, Brindley Place.

5. Examples from the present eg Darwin, London SkyCycle, Birmingham Charette.

6. UK government: Smart & Future cities agenda is a sustainability agenda.

7. Social inequalities dimension of sustainability.

8. Need to act at all scales simultaneously ie there’s work for all of us to do.

9. Challenge for modelling.

10. Challenge for research.

11. Challenge for practice: design, development & real estate investment.

12. Already being acted on. The supertanker is turning.

Past, present & future_Space Syntax in practice

[Speaking notes for Tim Stonor’s opening presentation at the First Conference on Space Syntax in China, Beijing, 5th December 2015.]

Good morning. It is an honour to be speaking at this important conference alongside so many distinguished speakers and attendees.

My talk today will cover the past, present and future of Space Syntax Limited’s experience working on projects in London and around the world, including here in China.

As you heard from Professor Hillier, the relationship between academic research and practice is fundamental. Practice provides an opportunity to apply Space Syntax techniques – and it also provokes new research questions. Continue reading Past, present & future_Space Syntax in practice

Integrated Urban Planning – balancing the multiple flows of the city

Notes for the UK-China Sustainable Urbanisation Conference in Chengdu, China on 24th September 2015

  

My job as an architect and urban planner is to design new towns and cities – as well as new parts of existing urban settlements. This means designing the multiple systems that make up a city. We often think about towns and cities in terms of their physical stuff: their buildings. Perhaps also in terms of their roads and rails. But for me the success of any city can be seen and measured in terms of its flows, the flows of:

  • energy
  • water
  • data

and, most important of all, the flows of:

  • people: in cars, on public transport, on bicycles and on foot.

Each of these flows is impacted by urban development: how much of which land uses are placed where, and how they are then connected to each other. Flows impact on other flows.

Sometimes these impacts are positive, sometimes negative. They have enormous social and economic implications.

Urban planning is as much about designing flows as it is designing buildings.

We live in an age of unprecedented computing power – this gives us the ability to better predict the nature of these impacts.

This is especially important to avoid the unwanted effects of urban development: congestion, air pollution, social isolation and unsustainable stresses on natural resources.

And computing can help create the positive impacts that are needed to support the essential purpose of cities: to be:

  • machines for human interaction
  • crucibles of invention
  • factories for cultural creation.

The last decade has seen the emergence of Integrated Urban Modelling. My company, Space Syntax, is a leader in the field: one of the UK companies referred to by the Chancellor as contributing to China’s growth and development. Working, for example, with the China Academy of Urban Planning and Design across China in Suzhou and Beijing.

Integrated Urban Models link the data generated by the multiple flows and reveal the interactions that help architects and urban planners create sustainable plans. Space Syntax has identified the essential role of spatial layout as the principal influence on urban performance. Spatial analytics are at the heart of our approach to Integrated Urban Modelling and we have made our discovery open source and openly available so that others can benefit too.

The Space Syntax Online Training Platform is a freely available, web-based resource through which urban practitioners, policymakers and local residents can equip themselves with information and skills to create more sustainable urban futures.

I’m pleased to announce that this platform is currently being translated into Chinese so that the Space Syntax’s discoveries and experiences can be more readily disseminated here in China.
_____________

Integration, balance, glue, pivot: space
In many ways, urban planning is the integration and balancing of multiple flows. Integration needs glue and balance needs a pivot. Spatial layout provides both.