All posts by Tim Stonor

Architect & Town Planner | Managing Director, Space Syntax Limited | Visiting Professor, University College London | Director, The Academy of Urbanism | Fellow, Royal Society of Arts | Resident of Faversham

We are what we street. The elements of successful #urban placemaking

PART ONE – THE ELEMENTS OF SUCCESSFUL URBAN PLACEMAKING
Location
How the site fits into its context, including complementary and competitive attractions; in other words, what else is nearby to which the design should respond? The success of any development, no matter how large, is a function of the wider setting.

Linkage
The specific points at which connections can be made into this context, including public transport connections; in other words the “gateways” into the design.

Layout
The spatial layout design of the project itself in terms of its streets and spaces, whether public/private or open/covered, and the importance of:

– first, encouraging through movement connections between gateways

– second, providing a simple, intelligible internal circulation network through a grid of streets and other connections.

This is the most important of the five elements since the spatial layout, once created, tends to be the most permanent part of the development. It is the most expensive to alter once constructed since it sets out the footprints of buildings and, importantly, since it carries the bulk of major services such as energy, water and data supply as well as waste handling.

Land use
The quantum of different land use attractions and the disposition of these within the spatial layout both in two and three dimensions; in other words where uses are and how they stack up, especially the land uses that occur at street level and any other principal pedestrian levels.

The location of land uses should follow the hierarchy of spatial connections created by the spatial layout design, with the most movement-sensitive land uses located on the most spatially important connections and so on. This alignment of land use attraction with spatial layout attraction is a fundamental property of both historic cities and successful modern places.

Landscape
How the spatial layout is “dressed” both in terms of the “green/blue” landscape of planting and water and the “architectural” landscape of building frontages at the principal pedestrian levels.

Here what matters is that the spatial layout is not overly fragmented or dispersed by planting and that the principal pedestrian levels are lined with open, active frontages.

PART TWO – THE DESIGN
The five elements of successful placemaking establish a framework for design practice. What matters next is the way in which these generic principles are translated into a specific design proposal. This is a creative step, which relies on a blend of imagination and craft, honed by experience.

The challenge for future urban practice is that the five elements are not commonly appreciated in the field of retail development, which has instead adopted principles of gravitational attraction that tend to create anchored, inward-facing, covered malls rather than open, street-based shopping streets, whether we call such streets “high streets” or “souqs”.

PART THREE – THE WAY FORWARD
It has been, and will continue to be, down to pioneering organisations to point out what is increasingly obvious to all but those who are too immersed in it: that anchored malls create sterile places; and then for these pioneers to deliver new places that work because they employ the timeless elements of successful placemaking.

Fortunately, this challenge is facilitated by the continued emergence of technology-based tools for analysing location, identifying points of linkage, testing different layout concepts and modelling the interaction of these with different land use and landscape treatments.

We don’t guess the structural performance of individual buildings so why do we guess the human performance of entire cities?

The structural steelwork of a large and complex building would not be designed without running engineering calculations. Even the smallest of buildings is subject to objective structural analysis. No client and professional team would rely on guesswork, no matter how famous or experienced the architect or engineer.

So why do we leave the human performance of places to the whim of architects who run no calculations and rely only on their instinct and ego? Why is the science of human behaviour so poorly developed? Why is chronic failure still tolerated?

In the early sixteenth century, William Harvey challenged the medical profession to take a more objective, more observation-driven approach to the understanding of the circulation of blood. At the time, medical thinking was largely based on the beliefs of Galen of Pergamon, who had set these out in the second century. Harvey challenged a medical mindset that hadn’t changed in one and a half millennia. And he encouraged his peers to embrace advances in science that allowed new forms of investigation.

We can see a similar state of affairs in the prevalence of, and institutional inertia around, twentieth century planning. Based on belief, not observation-based science, a doctrinal approach to urban planning and design pervades the professions. This is the case, whether the specific approach is Modernism, the Garden City movement or (and especially) Landscape Urbanism. Each is to some degree unscientific.

These approaches propose different kinds of urban outcomes but what unites them is a belief that the future should look fundamentally different to the form of continuously connected, dense and mixed-use urbanism found in cities for as long as there have been cities – the kind of urbanism that architects and town planners visit on their holidays.

The kind of urbanism – and here’s the irony – that Galen would have recognised. If only architecture and town planning were stuck in a fifteen hundred-year-old mindset. We would still have vehicles on the road but we wouldn’t have vehicle dominance. We wouldn’t have land use zoning that generates long-distance commuting, traffic congestion and negative health impacts. We wouldn’t be encroaching on the rural landscape with semi-detached, density-fearing dwellings.

Fundamental change in our professions is needed and science has an important part to play. In the spirit of Harvey’s observation-based approach, we need to embrace the new capabilities offered by sensing, analytics and modelling. We need to understand how cities truly work before we then form ideas about how to change them. We must move beyond the beliefs of twentieth century practice. The evidence is there to demonstrate that practice based on belief hasn’t delivered great places with the consistency required either by the investors in them or the users of them.

We can learn from Harvey, even if our end goal is the urbanism of Galen.

How cities connect people across space & time

The subject of “connectivity” is much mentioned in urban planning practice, not least by the Space Syntax community. 

But what do we mean by connectivity? 

1. Urban practice should connect across different scales of activity:

Urban Planning (macro scale)

Urban Design (meso scale)

Building Design (micro scale)

ie 3 scales of space.

2. Urban practice should also connect across different phases of activity:

Design (before construction)

Construction (during construction)

Operations (after construction)

ie 3 phases of time

This gives urban practice a clear space/time organisational framework. 

3. This framework can then be used to discuss the subject of connectivity according to several key dimensions:

Physical connections – connecting buildings, streets and spaces.

Human connections – connecting people with each other.

Environmental connections – connecting human interventions to the natural environment: climate, topography. 

Digital connections – using data to support physical connections and enhance human connections. 

Professional connections – connecting across practice boundaries. 

Connectivity is key. But how we connect is complex and multi-dimensional.

Space Syntax in China

How has Space Syntax been applied in China and are the findings different to those outside China? 

Space Syntax is not a prescriptive planning and design methodology. Instead it is a culturally responsive planning methodology. It begins by analysing the spatial layout of urban and rural areas and studying patterns of human behaviour, land use and land value. It then shows how spatial layouts influence these patterns. And it allows planners and designers to predict the outcomes of their proposals with greater accuracy than they could before. But it doesn’t prescribe a particular solution. Instead it responds to local cultural differences.

For this reason I am keen that Space Syntax is used by Chinese people to study and to plan Chinese cities, towns and villages. Only Chinese people fully understand Chinese life. We can train Chinese practitioners how to use Space Syntax tools, but how the findings of the research are interpreted is a different problem. It is a problem best answered by Chinese planners and designers.

Sustainability & resilience – a SMART approach

1. Aspects of sustainability/resilience: SMART outcomes
Social – improvements in formation & retention of social connections

Environmental – increases in renewable energy production and reductions in energy demand

Economic – increases in land value creation

Health – improvements in public health outcomes

Education – improvements in achievements/qualifications

Safety – reductions in offending & reoffending.

Environmental
Urban carbon footprint is made up of:
1. Building carbon.
2. Transport carbon.

Urban carbon reduction can be achieved by:
1. Building carbon reduction – intelligent building services: heating/cooling, lighting.
2. Transport carbon reduction – walking, cycling, public transport & less private vehicle use.

2. Process specification: SMART inputs
1. Integrated Urban Modelling of existing building performance and transport performance.
2. Predictive Urban Modelling of expected development impacts.

3. Asset requirements for SMART approach
1. Pervasive data sensing
2. Data mapping – centrally coordinated & then distributed eg open platform distribution
3. Data analysis – undertaken by city, academia & industry then shared
4. Planning & design response – use of data to create development proposals
5. Development proposal testing – using the Integrated Urban Model.

Sustainable cities of the future – sketch

Notes for keynote at UK Green Building Council Annual City Summit, Birmingham.

1. Spatial planning & human behaviour implications of sustainability – reduction of transport carbon through shift towards walking, cycling & public transport

2. A massive shift needed in transport + land use planning, urban + landscape design, architecture. Professional inertia. Turning the supertanker.

3. A massive opportunity. Reason to turn.

4. Lessons from the past eg Pompeii, Brindley Place.

5. Examples from the present eg Darwin, London SkyCycle, Birmingham Charette.

6. UK government: Smart & Future cities agenda is a sustainability agenda.

7. Social inequalities dimension of sustainability.

8. Need to act at all scales simultaneously ie there’s work for all of us to do.

9. Challenge for modelling.

10. Challenge for research.

11. Challenge for practice: design, development & real estate investment.

12. Already being acted on. The supertanker is turning.

Past, present & future_Space Syntax in practice

[Speaking notes for Tim Stonor’s opening presentation at the First Conference on Space Syntax in China, Beijing, 5th December 2015.]

Good morning. It is an honour to be speaking at this important conference alongside so many distinguished speakers and attendees.

My talk today will cover the past, present and future of Space Syntax Limited’s experience working on projects in London and around the world, including here in China.

As you heard from Professor Hillier, the relationship between academic research and practice is fundamental. Practice provides an opportunity to apply Space Syntax techniques – and it also provokes new research questions. Continue reading Past, present & future_Space Syntax in practice